首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   6篇
  国内免费   7篇
林业   1篇
农学   3篇
基础科学   2篇
  62篇
综合类   25篇
农作物   1篇
水产渔业   5篇
畜牧兽医   5篇
园艺   1篇
植物保护   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   2篇
  2013年   9篇
  2012年   26篇
  2011年   9篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
81.
在褐菖鲉(Sebastiscusmarmoratus)室内养殖条件下,以不换水作为对照组,设置2个石莼(Ulva lactuca)养殖密度梯度,研究了石莼对褐菖鲉养殖水体的生态作用。试验结果表明,石莼对褐菖鲉养殖水体中氮、磷营养盐的清除效果明显。在褐菖鲉养殖水体中分别加入石莼534和801g·m13共9d不换水,与对照组相比,养殖密度为534g·m-3的石莼组对硝态氮(NO3-N)、氨态氮(NH4-N)和无机磷(PO4-P)的清除率分别为83.7%、90.7%和86.5%;养殖密度为801g·m^-3的石莼组对NO3-N、NH4-N和PO4-P的清除率分别为90.1%、96.9%和92.7%。  相似文献   
82.
Soil Olsen P level has a major influence on crop yield, efficient P utilization, and soil fertility. In this study, the optimum Olsen P range was determined from long-term (1990-2012) field experiments in three typical soil types of China under single cropping of maize or double cropping of maize and wheat. The critical soil Olsen P value for crop yield was evaluated using three different models, and the relationships among P use efficiency (PUE), Olsen P, and total P were analyzed. The agronomic critical soil Olsen P values obtained from the three models for the neutral soil of Gongzhuling and the calcareous soil of Zhengzhou were similar; however, the values from the linear-linear and linear-plateau models for both maize and wheat were substantially lower than those from the Mitscherlich model for the acidic soil of Qiyang. The PUE response change rates (linear equation slopes) under different soil Olsen P levels were small, indicating slight or no changes in the PUE as the soil Olsen P increased in all three soils. A comparison of the Olsen P levels that achieved the maximal PUE with the agronomic critical values derived from the three models indicated that the linear-plateau model exhibited the best performance. The regression equation coefficients of Olsen P response to total P decreased as follows:Zhengzhou (73 mg g-1) > Qiyang (65 mg g-1) > Gongzhuling (55 mg g-1). The Olsen P level increased as the total P increased, which may result in a decrease in PUE. To achieve a relatively high crop yield, PUE, and soil fertility, the optimum Olsen P range should be 13-40, 10-40, and 29-40 mg kg-1 at Gongzhuling, Zhengzhou, and Qiyang, respectively.  相似文献   
83.

Background

Organic farmers frequently report sufficient yield levels despite low or even very low soil phosphorous (P) contents questioning the applicability of widely used laboratory methods for soil P testing for organic farming.

Aims

The aim of this study was to compare the validity of a broad range of different soil extraction methods on soils under organic management from South West Germany and to test the correlation of the measured soil P concentration with plant offtake.

Methods

Twenty-two soil samples of eight different organic farms were extracted with different solutions: (1) water, (2) CAL, (3) Olsen, (4) Mehlich 3, (5) Bray P1, (6) Bray P2, (7) NaOH+Na2EDTA, and (8) total P. The results were then correlated with above ground plant P.

Results

Spearman's rank correlation coefficient (rs) of correlations between above ground plant P and extractable soil P (Water-P, CAL-P, and Olsen-P [+active charcoal {+AC}]) determined with ICP-OES were strong (0.94, 0.90, and 0.93, respectively). Among the tested methods, above ground plant P showed a strong correlation with CAL-P as detected by ICP-OES (rs = 0.90) and colorimetry (rs = 0.91). The comparison of CAL-P data provided by farmers and CAL-P analyzed during this research showed discrepancies between the results.

Conclusions

The results of this study indicate that the CAL method can be used in organic farming despite a low extraction of organic P (Porg). Furthermore, it is recommended for farmers to take soil samples for analyses regularly and interpret changes in P in the long-term instead of interpreting individual samples.  相似文献   
84.
ABSTRACT

A simple screening method is needed to identify rice genotypes tolerant to low phosphorus (P) in soil. Nagina 22 (N22) mutants were classified as gain of function (gof) and loss of function (lof) for tolerance to very low P (soil Olsen P 2.01 mg kg?1). Two gof and two lof mutants were grown in hydroponics and in pot experiment at three P levels (-P, +P and +2P). Comparing response at +P and +2P in hydroponics we found that shoot and root dry weight were significantly less in gof and significantly more in lof in +2P. In pots with soil, tiller number and yield/plant was 3 fold less in gof but 2.5 to 3 fold more in lof and N22 in +2P compared to +P. That 2P can be used to identify low-P tolerant genotypes was validated using 3 low-P tolerant and 3 sensitive varieties whose response to low P soil is well documented. Both shoot and root dry weight was significantly less in +2P than in +P in tolerant and significantly more in sensitive genotypes. Thus screening in hydroponics in +2P can help identify low-P- tolerant genotypes easily and rapidly avoiding field screening.  相似文献   
85.
 旱地土壤电超滤-氮和磷中无机与有机组分的分配和解吸溶解动态有很大的不同。电超滤-全氮中的硝态氮和有机氮大致各占一半;电超滤-全磷的绝大部分是无机磷,有机磷的贡献极小。电超滤-吸光量与电超滤-氮有极高的正相关,可以相互换算。二者与冬小麦吸氮量都呈高度相关,远优于土壤全氮和碱解氮等化学指数。电超滤-磷与小麦吸磷量也有很高的相关性,与Mehlieh3-P相同,稍低于Olsen-P,但差异不显著。华北石灰性土壤电超滤-钾值(0-35min)仅为交换性钾值的57%,二者的相关性极高,与小麦吸钾量呈中等高度的正相关。从电超滤-养分的解吸动态可以显示它们对植物供应的速率。  相似文献   
86.
Diffusive gradients in thin‐films (DGT) technology provides an alternative assessment of available phosphorus (P) for a range of crops, suggesting a preliminary examination of the performance of the new DGT‐P test, compared to existing bicarbonate extractable Olsen and Colwell P tests, for pastures is justified. This study utilized historic data from the Australian National Reactive Phosphate Rock (NRPR) study (1992–1994) that included 25 experimental sites representing a wide range of soil types and climates used for pasture production. Stored (~19 yr) soil samples were analysed for DGT‐P, Olsen P and a single point P buffering index (PBI) and re‐analysed for Colwell P. Results showed the traditional bicarbonate extractable Colwell (r2 = 0.45, P < 0.001) and Olsen P (r2 = 0.27, P < 0.001) methods predicted relative pasture P response more accurately, compared to the novel DGT‐P test (r2 = 0.09, P = 0.03) when all 3 yr of data were examined. We hypothesize that the harsher bicarbonate extraction used for the Olsen and Colwell methods more accurately reflects the ability of perennial pasture roots to access less labile forms of P, in contrast to the DGT‐P test, which does not change the soil pH or dilute the soil and appears unable to fully account for a plants ability to solubilize P. Further studies are needed to compare the capacity of DGT‐P to measure P availability in perennial pasture systems and to better understand the soil chemical differences between pasture and cropping systems.  相似文献   
87.
Abstract

Soil analysis for small farms in developing countries is often inconvenient and prohibitively expensive, yet the information gained from these soil tests could result in significant benefits. Based on tests done on a limited range of soils, the pressurized hot water (PHW) extraction coupled with colorimetric or turbidimetric analysis is a promising alternative. Before this extraction and analysis can be used in developing countries, testing is needed across the range of soils found in these countries. At Brigham Young University (BYU), 228 soils from Guatemala and Morocco were analyzed for NO3‐N, phosphorus (P), and potassium (K) using standard methods (water–CTA, Olsen–molybdic acid and ammonium acetate–atomic absorption, respectively). Results were correlated to values obtained from the PHW extraction coupled with colorimetric or turbidimetric analytical procedures. The relationships between these tests were good (r2 values of 0.96, 0.71, and 0.52 for NO3‐N, P, and K, respectively). In an additional study comparing several P extraction methods for Guatemala soils, relationships between PHW‐extractable P and Olsen‐, Bray I–, and Mehlich I–extractable P (r2 values of 0.75, 0.67, and 0.46, respectively) suggest that PHW is a promising P‐extraction procedure for use in Guatemala. Overall, PHW extraction and accompanying analyses are a less expensive alternative to current soil nutrient extraction and analysis procedures for the soils of Morocco and Guatemala.  相似文献   
88.
Abstract

The purpose of this article was to compare soil phosphorus (P) extraction by sodium bicarbonate solution (Olsen P) and by ammonium lactate (AL P) and to create a model for prediction of Olsen P using ordinary soil‐fertility control data. The soils data used in this study included Olsen P, pHKCl, pHH2O, organic matter, AL P, and AL K. Soil pHKCl ranged from 3.5 to 8, organic matter up to 5%, AL K up to 400 mg kg?1, and AL P up to 200 mg kg?1. Olsen P and AL P were significantly correlated, and the difference between them was influenced by soil pH. Regression models included all soil data grouped by soil pH range, which significantly decreased the difference between predicted and measured Olsen P. The validation of the model was conducted on new data sets from field fertilization trials. The results show that Olsen P can be related to AL P and used for fertilizer recommendations instead of AL P.  相似文献   
89.
河口区参照状态的确定是营养盐基准制定的核心步骤.采用参照点或观测点指标频数分布曲线法,利用长江口及邻近海域1992-2010年的调查数据,针对长江口外海区及舟山海区富营养化指标的原因变量,即无机氮和活性磷酸盐,进行参照状态值的确定.经分析,长江口外海区无机氮各季节参照状态可确定如下:春季为0.317mg/L、夏季为0.273 mg/L、秋季为0.211mg/L,活性磷酸盐各季节参照状态:春季为0.014mg/L、夏季为0.009 mg/L、秋季为0.018 mg/L;舟山海区无机氮各季节参照状态确定如下:春季为0.372mg/L、夏季为0.273 mg/L、秋季为0.441 mg/L,活性磷酸盐各季节参照状态:春季为0.020mg/L、夏季为0.018 mg/L、秋季为0.029 mg/L.  相似文献   
90.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号